
ZCC
ZJU C COMPILER

Xiuye Gu, Haolin Fu, Qimai Li, Qingcheng Xiong

WHAT DOES ZCC
SUPPORT?

AND ERROR RECOVERY

ERROR HANDLING

• Low level errors

• Find them when building the Concrete Parsing Tree and recover
most of them.

• High level errors

• Find them when transferring the Concrete Parsing Tree to
Abstract Parsing Tree.

WHAT CAN WE HANDLE AND RECOVERY

LOW LEVEL ERRORS

• 1. Missing semicolon

• 2. Missing right curly bracket

• 3. wrong identifiers (not conform to the identifier naming rule in C)

• 4. wrong characters after operators

• ZCC can do error recovery for the above 4 rules and get the
correct parsing tree.

• 5. Various statements that do not conform to ANSI C grammar.
error_pos.c)

PRINCIPALS

RECOVER LOW LEVEL ERRORS

• Adding error rules to our BNF

• Adding EOF token to handle the last missing right curly bracket

• Remove the error token from the parsing tree

• Insert the missing token into the parsing tree

• Using some counter to balance the curly brackets

• So that we can discover most common mistakes and do error
recovery (build the correct parsing tree)

WHEN CONCRETE TREE -> ABSTRACT TREE

HIGH LEVEL ERRORS

• 1. When function declaration does not conform to its definition.

• 2. Repeated definition for variables.

• 3. Types not match when assigning value.

• 4. In expressions, the type of operand is not allowed in the grammar rules.

• 5. Typo.

• Using edit distance to give the hint.

• 6. When calling a certain function, the parameter table does not confirm to its
definition.

• 7. The return value of a function does not confirm to its definition.

BASIC X86 SUPPORT

• Calculation: add, sub, mul, div.

• Logic: and, or, not.

• Jump: jmp, je, jg, jl.

• Shift: sal, sar.

• Function: call, ret.

• Stack: push, pop.

• Float number operation: fld, fstp, fadd, fsub, fmul, fdiv.

• Global/Static variables, Constant float number, String

OPTIMIZATIONS

• Front-end optimization

• constant folding

• dead code elimination

• Back-end optimization

• Register optimization

• set ebx,ecx,edx to be the temporary residential area for temp variables.

• set esi edi to be the register swap space for eax

• Command optimization

• *2 / 4 / 8… ->sal (change multiplying two’s multiples to shift operation)

• lea 2*eax+offset -> reg

