
Depth Reconstruction from Stereo Image Pairs

Xiuye Gu
xiuyegu@stanford.edu

Abstract

Depth information is a kind of important 3D informa-
tion, and two images are the minimum requirement that
we can obtain unambiguous depth information. So we
work on the problem of depth reconstruction from stereo
image pairs. We start from adopting sequence alignment
algorithm to compute disparity, based on the similarity
scores computed by mc-cnn [9]. According to our ini-
tial results, this pipeline does not work well compared
with other mature pipelines, and the sequence alignment
is prone to error. So we reimplement the state-of-the-
art GC-Net [2], which regresses disparity in an end-to-
end way. Experimental results reveal that, when training
with groundtruth disparity masks, the model is prone to
predict very blurry disparity maps, it works better when
training without the masks. Our source codes reside
in this repository: https://github.com/laoreja/
CS231A-project-stereo-matching.

1. Introduction

The part in the course that attracts me most is the 3D ge-
ometry part. Most visual data we have are 2 dimensional, if
we can reconstruct the 3D information, we will have better
understanding of these data, since our world is 3 dimen-
sional. Depth reconstruction is one of the 3D reconstruc-
tion tasks, and it has many applications in the real world,
e.g., autonomous robot navigation, mobility aid for visu-
ally impaired people, etc. Two images are the minimum re-
quirement to obtain unambiguous depth information. With
only one image, there is the intrinsic ambiguity of the 3D to
2D mapping, and could lead to some perspective illusions.
By means of triangulation, we can infer the depth of most
points in the stereo images, if we are able to find corre-
sponding points in the two images, or the disparity map.

The first step of depth reconstruction is image rectifica-
tion, which is a well-solved problem, and is in the course
material; we can obtain more accurately rectified image
pairs using stereo cameras. The next step is estimating the
disparity map, i.e. estimating the distance between corre-
spondent points. The last step is triangulation; the principle

of triangulation is a similarity triangle problem, see Fig 1.
We can calculate the depth Z of a point P , if we know its
disparity d = xR − xT in the two images, using the length
of base line b and the camera focal length f :

Figure 1. Triangulation. Computing depth from disparity.

Z =
b · f
d

(1)

So the depth reconstruction problem can be simplified as
estimating the disparity map from a stereo image pair.

The problem can be stated as: given a rectified stereo-
scopic image pair (a reference image R and a target image
T ), where the y coordinates of each corresponding points
pair are the same, we need to obtain a uni-valued disparity
map d(x, y). The (x, y) coordinates of the disparity map are
taken to be coincident with the pixel coordinate of the ref-
erence image. The correspondence between a pixel (x, y)
in the reference image R and a pixel (x′, y′) in the target
image T is then given by

x− d(x, y) = x′, y′ = y. (2)

Usually, a conservative bound on the maximum disparity
value disp max is given or can be estimated.

In this course project, we first adopt the sequence align-
ment algorithm to compute disparity, the initial results are
not very satisfying, though through hand-tuning parameters

1

https://github.com/laoreja/CS231A-project-stereo-matching
https://github.com/laoreja/CS231A-project-stereo-matching


and adding various algorithms into the pipeline, the perfor-
mance may improve. But our reasoning is that the sequence
alignment is prone to error and may be worse than other
disparity computation algorithms.

We switch to other methods. The state-of-the-art al-
gorithm is [2] (at that time it ranks first on both KITTI
and KITTI2015 leaderboards1, but now it ranks second on
KITTI2015), which utilizes a very large dataset to learn the
disparity information from end to end, without hand-tuning
many parameters and stacking many algorithms, though we
still need to tune the hyper-parameters when training. And
it outperforms many mature pipelines, e.g., [9]. So we reim-
plement this algorithm to see whether it is that powerful.

2. Related work

Binocular stereo matching, the procedure of obtaining
disparities, is an old problem in computer vision, and has
been heavily investigated. [7] generalized stereo match-
ing algorithms to four components: matching cost compu-
tation, cost (support) aggregation, disparity computation /
optimization, and disparity refinement. [8] made a clas-
sification and evaluation specifically for the cost aggrega-
tion component. [4] introduced many stereo matching algo-
rithms in the history. With the development of deep learn-
ing, Zbontar and LeCun [9] first proposed to train a convo-
lutional neural network (MC-CNN) on pairs of small image
patches where the true disparity is known. The output of the
network is used to initialize the matching cost, before that,
the matching cost is computed from the raw image pixels.
MC-CNN improves the performance by a large amount, and
it is now commonly be used in the stereo matching pipeline.
For example, the method [3] ranked first on the Middlebury
leaderboard2.

In the big data era, Mayer et al. [6] proposed three large
synthetic stereo datasets, and presented a convolutional net-
work for real-time disparity estimation. More deep ap-
proaches are proposed. Recently, Kendall et al. [2] pro-
posed an end-to-end deep learning architecture for regress-
ing disparity, and its performance is stated in Sec. 1.

3. Approach

3.1. Adopting sequence alignment algorithm

Adopting sequence alignment algorithm to do the dis-
parity computation is possible, so our first approach is as
follows: using the four components [7] to refine the results
step by step, adopting MC-CNN (we use the MC-CNN-
arct model, its architecture is shown in Fig 2 to compute
the initial matching cost, applying some cost aggregation

1http://www.cvlibs.net/datasets/kitti/eval stereo flow.php?benchmark=stereo,
http://www.cvlibs.net/datasets/kitti/eval scene flow.php?benchmark=stereo

2http://vision.middlebury.edu/stereo/eval3/

Figure 2. The MC-CNN-arct architecture [9].

algorithm (we use [10] in our experiments), using the se-
quence alignment algorithm to compute disparity, adopt-
ing some disparity refinement algorithms (common meth-
ods are left and right consistency check, interpolation, sub-
pixel enhacement etc., usually need more than one refine-
ment algorithm). The reasoning for using [10] is: since se-
quence alignment algorithm only takes a single horizontal
line into consideration, we need to use some techniques to
make the similarity score of each pixel include the informa-
tion of its vertical neighbors.

Figure 3. Due to the constraints on the possible disparity, the mem-
ory usage is greatly reduced. The figure is a tiny example, W = 8
and disp max = 3. The adapted algorithm only takes up the
memory space of the blue squares.

we adopt the Needleman-Wunsch algorithm3 to do the
sequence alignment. As for how we adapt the sequence

3https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch algorithm

2



alignment algorithm, which is originally work on genome
or text sequences, to compute the disparity: the algorithm
is performed on each horizontal line of the images. The in-
sertion and deletion operation in this algorithm corresponds
to skipping a pixel in the target and reference images re-
spectively, substitution corresponds to the matching of two
points. By finding the best path receiving the maximum
score, we find all the matching points pairs in the whole
horizontal line.

The memory usage of this dynamic programming algo-
rithm is greatly reduced due to the constraints on the dispar-
ity. Suppose the reference image is always the image taken
by the left camera, then for the matching points pair, the co-
ordinates must satisfy xR ≥ xT and xR−xT < disp max.
Suppose the image width is W , instead of using O(W×W )
memory space, we only need to use O(W × disp max),
which is illustrated in Fig 3.

The tricky part lies in the score definition of the three
operations. We use the following score scheme in the ex-
periments (larger score means better option. The matching
cost obtained from MC-CNN ranges from 0 to 1, the smaller
the more similar):

Del(x) = 0.1

Ins(y) = 0.1

Sub(x, y) =

{
0, if match(x, y) > 0.5

1−match(x, y), otherwise.
(3)

3.2. End-to-end Learning of Geometry and Context

The large-scale synthesized dataset SceneFlow [6]
makes training deep neural network for regression possi-
ble. Using Middlebury or KITTI, the datasets’ scales are
too small for regression DNN training.

[2] is an interesting end-to-end method, which reduces
the trial and error of hand-tuning many parameters, and of
fitting various algorithms to the four components. With
a well-defined deep neural network architecture, we only
need to tune the hyper-parameter and train the model. And
it outperforms all the complicated traditional methods on
the two KITTI leaderboards. The whole network architec-
ture is illustrated in Fig 4 and Fig 5 (image copied from the
paper).

Compared with the previous work, its major difference is
the cost volume, which corresponds to the (max depth +
1)×height×width cost volume in the geometry of stereo
vision. Instead of simply concatenating the left and right
feature maps, GC-Net concatenating each unary feature
with their corresponding unary from the opposite stereo im-
age across each disparity level, and packing these into a 4D
volume.

After computing cost volume, it utilizes 3D convolution
to refine the cost volume, and uses the deep encoder-and-
decoder technique to reduce the computational complexity.

GC-Net also adopts a differentiable argmin function,
which is the sum of the all the depth, weighted by their soft-
max confidence.

Since the paper stated most of the details clearly, we
reimplement this paper using TensorFlow (following the pa-
per), and conducts experiments on two benchmark datasets.

4. Experiments

4.1. Initial results of using sequence alignment

We conduct the initial experiments on the first training
image pair in the KITTI 2012 stereo dataset.

Firstly, we use the MC-CNN-arct model [9] to ob-
tain the initial 3D matching cost volume with shape
[disp max,H,W ]. That is, for every point (x, y) in the
reference image, we estimate the cost of matching it with
the point (x − d, y) for each d in the range [0, disp max).
Using the simple argmin function, we obtain a very rough
disparity estimation. Applying the sequence alignment al-
gorithm in Sec 3.1 to this cost volume, we obtain a prelimi-
nary result.

Since the matching cost obtained from the output of the
neural network is computed on 9 × 9 patch pairs, which
is rather small considering the image size (370 × 1226),
we adopt the cross-based cost aggregation algorithm [10]
to aggregate the matching cost, and then apply the sequence
alignment algorithm to the aggregated matching cost vol-
ume.

The qualitative results for each step and the input image
pair are shown in Fig 6.

Though the qualitative results look fine, the quantitative
results (the number of pixels whose error is larger than K
and the average error) is not satisfying. The most likely
reason is that the score scheme is not good. We increase
the constant score of deletion and insertion to 0.2, but there
is no improvement. And compared with the whole pipeline
used in [9], this pipeline’s performance is much worse.

The score scheme is hand-tuned, and cannot be per-
fect. Under the sequence alignment algorithm, since the
score used to determine the stereo matching is accumulated
through the whole horizontal line, the error introduced by
the imperfect score scheme and other noise also accumu-
lates. So we decided to switch to other methods, to reim-
plement the GC-Net [2].

4.2. Datasets

We use two datasets in the following experiments: the
two KITTI stereo datasets [1, 5] (combined as one dataset),
and SceneFlow [6].

3



Figure 4. The deep stereo regression architecture, GC-Net [2].

Figure 5. Details of the GC-Net architecture.

The two KITTI datasets are collections of rectified im-
age pairs taken from two video cameras mounted on the
roof of a car, and a rotating laser scanner mounted behind
the left camera recorded ground truth depth, labeling 30%
of the image pixels. The ground truth are noisier. The 2012
dataset contains 194 raining and 195 testing image pairs,
and the 2015 dataset contains 200 training and 200 testing
images. For the training image pairs, the ground truth dis-
parity maps and the masks indicating the points with valid
ground-truth disparity are given. The KITTI datasets have
online leaderboards for evaluation, where people can submit

the test results of their methods to compare with the state of
the art. So the ground-truth disparity of the testing pairs is
withheld.

SceneFlow is a large-scale synthetic dataset, consisting
of three subsets (each subset using different synthetic tech-
niques). We combine the three subsets and divide the whole
dataset into two subsets: 35,981 training and 843 testing im-
age pairs. For the FlyingThings3D subset, we use the pre-
divided training and testing subset, for the other two subset,
we use the ratio of 5 : 1. Since it is very large, we use a
batch size of 1, and the whole training process will cover
only several epochs, so it is very hard to overfit, and we do
not use a validation set.

For SceneFlow, when training, we use a 256 × 512 ran-
domly located crop from the input images. When testing,
we use a 256 × 512 center located crop from the input im-
ages. For KITTI, we split the input images into four evenly-
sized images to fit the GPU memory.

4.3. Implementation details

Follow the paper, we use the TensorFlow Framework,
and implement the model using all the built-in tf.nn func-
tions. We follow every details written in the paper. The
only difference is that I implement a multiple-GPU version
to speed up the training. But there are some details missing
from the paper, for the variable initializers, we follow the
Resnet implementation in the TensorFlow model zoo. For
the hyper parameters of the RMSProp optimizer, we fol-
low the Inception implementation at first, since the training
runs not very well, we vary the hyper parameters later. We
also decrease the learning rate to 0.0001 after 40K iterations
training. Our experiments run on Titan-X GPUs.

4.4. Results of GC-Net

Following the paper, We first train from scratch on
SceneFlow, for about 50K iterations (with batch size 4, run
1 pair of images on each GPU), and then finetune on KITTI,
for about 10K iterations (with batch size 3). The number of
iterations we use is adjusted based on the training results
and the loss curves.

Since the KITTI dataset is sparse, with a disparity mask,

4



(a) Left input (b) Right input

(c) Left MC-CNN (d) Right MC-CNN

(e) Left MC-CNN + Sequence Alignment (f) Right MC-CNN + Sequence Alignment

(g) Left MC-CNN + CBCA (h) Right MC-CNN + CBCA

(i) Left MC-CNN + CBCA + Sequence Alignment (j) Right MC-CNN + CBCA + Sequence Alignment

Figure 6. Sequence alignment qualitative results

so we train the GC-Net model with a disparity mask, to
mask out the inconsistent and occluded points. The Scene-
Flow dataset does not provide such masks, after communi-
cating with the dataset’s authors, we run left and right con-
sistency checks on the left and right ground truth disparity
maps to form the mask, using the formula in [9]. How-
ever, this causes some problem in the training: visualizing
the predicted results, we find that the model tends to predict
blurry and averaged disparity maps. It may because we use
a too small threshold in the consistency check, and in this
way make too much masks. But if the model is very good,
it should learn to regress disparity from the unmasked parts

(we average the loss on the unmasked points, so the loss
is normalized). Besides, for datasets like KITTI, the pro-
vided training ground truth is with a mask, we still think the
methods should work with a mask, maybe this will require
a better designed network.

Dataset MAE Bad@3 Bad@5 Bad@7
SceneFlow test 14.04 0.66 0.53 0.45
KITTI train 2.86 0.28 0.146 0.0866

Table 1. Results when training with masks.

For both datasets, we use the common evaluation criteria
Bad@K: the percentage of pixels where the true disparity

5



and the predicted disparity differ by more than K pixels.
Usually, only errors on non-occluded pixels are counted.
We will also present some qualitative results.

The quantitative results are shown in Table 1. We do not
have qualitative results on KITTI test set (remember we do
not have the ground truth of the test set). And due to some
both resource and time limitations, we do not do validation.
Since the current model has some space for improvement,
and one can only submit limited times on the leaderboard, I
do not submit it to the leaderboard. The qualitative results
on SceneFlow are shown in 7, subfigure a to d. The qual-
itative results on KITTI are shown in 8, including samples
from both training set and testing set. Though the test re-
sults on SceneFlow is bad, but the results on KITTI is not
bad. The qualitative test results seem fine. Maybe because
KITTI’s ground truth is blurry and sparse, after applying the
mask, the predictions seem good.

After training with the masks, during testing, we find that
if using fixed mean and variance (calculated in the train-
ing process) in the batch normalization layer, the results are
bad, see Fig 7, subfigure e and f. However, if using the real-
time mean and variance, the results are better, especially on
the KITTI dataset.

To try to obtain better results, we remove the masks, and
train the model from scratch. This time, the visualized re-
sults seem better, and is shown in Fig 7, subfigure g and
h. But time is limited, we cannot obtain the new qualita-
tive results before deadline, so we represent some tempo-
rary qualitative results (The model is still training, we show
the training samples prediction results).

5. Conclusion

Through my exploring on the two stereo matching ap-
proaches, one traditional, one using deep neural network.
The traditional one requires much trials and errors, and it
is hard to outperform the deep approaches (according to
the leaderboards, the methods ranked higher are all CNN
heavy). However, the deep approach, based on my experi-
ence, is very tricky, and requires great deep neural network-
ing tuning techniques. The model architectures are correct,
why the results (currently, the training results of the training
without mask version seem still cannot reproduce the high
performance of the original paper) are so different is beyond
me.

References
[1] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-

tonomous driving? the kitti vision benchmark suite. In
Conference on Computer Vision and Pattern Recognition
(CVPR), 2012.

[2] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry,
R. Kennedy, A. Bachrach, and A. Bry. End-to-end learning

of geometry and context for deep stereo regression. arXiv
preprint arXiv:1703.04309, 2017.

[3] L. Li, X. Yu, S. Zhang, X. Zhao, and L. Zhang. 3d cost
aggregation with multiple minimum spanning trees for stereo
matching. Applied Optics, 56(12):3411–3420, 2017.

[4] S. Mattoccia. Stereo vision algorithms for 3d dense recon-
struction. University of Florence, 2012.

[5] M. Menze and A. Geiger. Object scene flow for autonomous
vehicles. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[6] N.Mayer, E.Ilg, P.Häusser, P.Fischer, D.Cremers,
A.Dosovitskiy, and T.Brox. A large dataset to train
convolutional networks for disparity, optical flow, and scene
flow estimation. In IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.
arXiv:1512.02134.

[7] D. Scharstein and R. Szeliski. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. Interna-
tional Journal of Computer Vision, 47(1):7–42, 2002.

[8] F. Tombari, S. Mattoccia, L. Di Stefano, and E. Addimanda.
Classification and evaluation of cost aggregation methods
for stereo correspondence. In Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on, pages
1–8. IEEE, 2008.

[9] J. Zbontar and Y. LeCun. Stereo matching by training a con-
volutional neural network to compare image patches. Jour-
nal of Machine Learning Research, 17:1–32, 2016.

[10] K. Zhang, J. Lu, and G. Lafruit. Cross-based local stereo
matching using orthogonal integral images. IEEE Trans-
actions on Circuits and Systems for Video Technology,
19(7):1073–1079, 2009.

6



(a) Train with mask, groundtruth (b) Train with mask, masked prediction

(c) Train with mask, original image (d) Train with mask, prediction

(e) Train with mask, bad when using fixed mean/var, groundtruth (f) Train with mask, bad when using fixed mean/var, prediction

(g) SceneFlow train without mask original image (h) SceneFlow train without mask prediction

Figure 7. GC-Net qualitative results on SceneFLow

7



(a) Perform on training set, ground truth 1 (b) Perform on training set, masked prediction 1

(c) Perform on training set, ground truth 2 (d) Perform on training set, masked prediction 2

(e) Perform on test set, original image 1 (f) perform on test set, prediction 1

(g) Perform on test set, original image 2 (h) Perform on test set, prediction 2

Figure 8. GC-Net qualitative results on KITTI

8


